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(57) ABSTRACT

A microprocessor system comprises a matrix computational
unit and a control unit. The matrix computational unit
includes one or more processing elements. The control unit
is configured to provide a matrix processor instruction to the
matrix computational unit. The matrix processor instruction
specifies a floating-point operand formatted with an expo-
nent that has been biased with a specified bias.
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SCALABLE MATRIX NODE ENGINE WITH
CONFIGURABLE DATA FORMATS

CROSS REFERENCE TO OTHER
APPLICATIONS

[0001] This application is a continuation of co-pending
U.S. patent application Ser. No. 16/403,083, entitled DATA
PATH FOR SCALABLE MATRIX NODE ENGINE WITH
MIXED DATA FORMATS filed May 3, 2019 which is
incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

[0002] Machine learning training is a data and computa-
tional intensive operation. The process is tedious and time
consuming, requiring both a significant amount of relevant
training data and the computing resources to process it.
Moreover, the data and computational resources only
increase with the complexity of the problem being solved.
To train a machine learning model, high-powered CPUs
perform complex matrix operations using the training data to
determine appropriate weights. To increase the speed of
training, graphics processing units (GPUs) are used as an
alternative or in addition to traditional CPUs. GPUs allow
for some of the training to be parallelized and help to
optimize certain math operations. However, GPUs are tra-
ditionally designed for processing graphics problems such as
rendering three-dimensional worlds onto two-dimensional
displays. When applied to machine learning, GPUs can
require significant amounts of power for the amount of
computational power they provide. Moreover, the data for-
mats and data pipeline used by GPUs are designed for
graphics processing and not for training machine learning
models. Therefore, there exists a need for a machine learning
training system that is powerful, computational, and power
efficient. Such a system should support a high data band-
width to significantly increase the amount of training data
that can be processed. Moreover, the data formats and data
pipeline should be optimized for the training data and
resulting machine learning models.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments of the invention are dis-
closed in the following detailed description and the accom-
panying drawings.

[0004] FIG. 1 is a flow diagram illustrating an embodi-
ment of a process for training a machine learning model.
[0005] FIG. 2 is a block diagram illustrating an embodi-
ment of a system for training a machine learning model.
[0006] FIG. 3 is a block diagram illustrating an embodi-
ment of a node engine for performing matrix computations.
[0007] FIG. 4 is a block diagram illustrating embodiments
of an 8-bit floating-point format.

[0008] FIG. 5 is a block diagram illustrating an embodi-
ment of a 21-bit floating-point format.

[0009] FIG. 6 is a flow diagram illustrating an embodi-
ment of a process for performing matrix computations.
[0010] FIG. 7 is a flow diagram illustrating an embodi-
ment of a process for performing matrix computations.
[0011] FIG. 8 is a flow diagram illustrating an embodi-
ment of a process for performing multiple interleaved matrix
computations.

Nov. 5, 2020

DETAILED DESCRIPTION

[0012] The invention can be implemented in numerous
ways, including as a process; an apparatus; a system; a
composition of matter; a computer program product embod-
ied on a computer readable storage medium; and/or a
processor, such as a processor configured to execute instruc-
tions stored on and/or provided by a memory coupled to the
processor. In this specification, these implementations, or
any other form that the invention may take, may be referred
to as techniques. In general, the order of the steps of
disclosed processes may be altered within the scope of the
invention. Unless stated otherwise, a component such as a
processor or a memory described as being configured to
perform a task may be implemented as a general component
that is temporarily configured to perform the task at a given
time or a specific component that is manufactured to per-
form the task. As used herein, the term ‘processor’ refers to
one or more devices, circuits, and/or processing cores con-
figured to process data, such as computer program instruc-
tions.

[0013] A detailed description of one or more embodiments
of'the invention is provided below along with accompanying
figures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

[0014] A scalable node engine with multiple matrix pro-
cessors and configurable data formats is disclosed. As a core
component of a training platform for machine learning
models, node engines can be arranged in a network to
perform training for machine learning models. As the com-
putational and data requirements increase, the number of
node engines in the network can be increased to handle the
additional requirements. The disclosed node engines are
highly efficient in terms of performance per mm> per watt
compared to traditional CPUs and GPUs tasked for similar
workloads. The node engine architecture achieves this per-
formance improvement in part by optimizing the data for-
mats and the data path for a machine learning workload. For
example, the node engine includes multiple matrix proces-
sors that can each interleave multiple matrix operations. A
node engine with a group of eight matrix processors can
compute the result of a matrix multiplication every cycle.
When stalled waiting for data for a first set of related matrix
operations, each matrix processor can interleave a second set
of related matrix operations to utilize otherwise idle com-
putational resources. In some embodiments, the matrix
operands are stored using a lower-bit floating-point format
and the intermediate and final results are calculated using a
higher-bit floating-point format. The lower-bit format
improves the read data bandwidth of the matrix processor
while the higher-bit format preserves accuracy and precision
for the matrix result, for example, by preventing the loss of
accuracy in quantized results. Different configurable data
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formats may be selected to specify different data format
configurations, for example, to vary the number of bits
allocated for mantissa and exponent fields. This allows the
data format to be optimized based on the particular matrix
operation used for a particular machine learning task. Addi-
tionally, the data formats may include a configurable bias for
biasing the exponents. This improves the range of the
exponents and allows a larger range to be utilized.

[0015] In some embodiments, the node engines are
arranged in a mesh-like network. Each node engine includes
a control unit, a memory, registers, multiple matrix proces-
sors, and a post-processing unit such as a vector computa-
tional unit. The control unit can processes customized
instructions including matrix computational instructions
directed to one of the multiple matrix processors and is used
to synchronize results between different matrix processors
and node engines. Matrix results may be stored in a register
file and processed using vector operations by a post-pro-
cessing unit. The software running the node engines is
capable of taking large matrix operations and subdividing
the problem. Different sub-components of the problem may
be distributed to different node engines and to different
matrix processors of each node engine. For example, two
large matrices can be sliced such that each slice is optimized
to the matrix size of a matrix processor. The slices can then
be distributed to different matrix processors of different node
engines where matrix multiplication on the slices is per-
formed. The result of each matrix multiplication can be
combined to compute the multiplication result of the original
larger matrices.

[0016] In some embodiments, a microprocessor system
comprises a matrix computational unit and a control unit.
The matrix computational unit includes one or more pro-
cessing elements. For example, the matrix computational
unit includes a matrix of computational cells for determining
the computational results of two elements from two oper-
ands. An 8x8 matrix computational unit includes 64 com-
putational cells. Similarly, an MxN matrix computational
unit includes MxN computational cells. The matrix compu-
tational unit is part of a matrix processor that is controlled
via the control unit. In some embodiments, a control unit is
configured to provide a matrix processor instruction to the
matrix computational unit. For example, the control unit
provides a matrix multiplication instruction to a matrix
processor for the matrix computation unit to perform. The
matrix processor instruction specifies a floating-point oper-
and formatted with an exponent that has been biased with a
specified configurable bias. For example, a matrix multipli-
cation instruction specifies two floating-point matrix oper-
ands. FEach element of the matrix operands is formatted
using a specific floating-point format and a configurable
exponent bias. Along with the matrix operands, the matrix
processor instruction specifies the floating-point format the
matrix elements use, such as a format allocating 1-bit for the
sign bit, 4-bits for the exponent, 3-bits for the mantissa, and
a particular exponent bias. In various embodiments, the bias
is configurable by specifying a value corresponding to an
exponent bias. In some embodiments, the bias is reconfigu-
rable. For example, a matrix instruction may specify a new
bias that is used to reconfigure the configurable bias. In some
embodiments, the floating-point format supports denormal
numbers to increase the number of values that can be
represented.
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[0017] In some embodiments, the matrix processor
instruction specifies a floating-point operand formatted
using a first floating-point representation format. For
example, the instruction specifies an 8-bit floating-point
format that allocates 4-bits for the exponent, 3-bits for the
mantissa, and a single sign bit. The specified format is used
for the elements of a matrix operand. The format may be
selected to increase the data bandwidth going into the matrix
computational unit of the matrix processor. The matrix
computational unit accumulates an intermediate result value
calculated using the floating-point operand, and the inter-
mediate result value is in a second floating-point represen-
tation format. For example, intermediate results use a dif-
ferent floating-point format such as a 21-bit floating-point
format. As another example, intermediate results may use a
different floating-point format such as a 27-bit or another
appropriate floating-point format. The number of bits dedi-
cated to the intermediate results may be selected to prevent
the loss of accuracy when quantizing results. A format using
a larger number of bits to represent an intermediate result
may be selected to prevent overflow and/or underflow errors
that could result by using the first floating-point format. The
matrix computational unit outputs an accumulated interme-
diate result as an output formatted in a third floating-point
representation format. For example, multiple accumulated
intermediate results may be moved from the matrix proces-
sor as a matrix result. The result may be outputted using a
third format that is compatible with the bus that the matrix
processor is connected to. For example, a node engine may
utilize internal buses that are 64-bytes wide. The interme-
diate accumulated results can be output from the matrix
computational unit as 16-bit floating-point values, allowing
32-elements to be moved from the matrix processor for each
move instruction. An accumulated result with 64 elements
can be moved from the matrix processor to a register file of
the node engine using two move instructions with each
instruction moving 32 elements. A move high instruction
may be used to move the high 32 elements (e.g., elements
32-63) and a move low instruction may be used to move the
low 32 elements (e.g., elements 0-31). In some embodi-
ments, the move instructions are non-destructive and do not
clear the contents of the source accumulators when moving
a value from the source accumulators of a matrix processor
to a memory location external to the matrix processor, such
as an output array or register.

[0018] FIG. 1 is a flow diagram illustrating an embodi-
ment of a process for training a machine learning model. For
example, the process of FIG. 1 can be used to train a model
for autonomous or driver assisted driving. As vehicles are
driven, such as by a human driver, autonomously, or by a
mix of both human and assisted driving, driving data can be
captured. The captured data is prepared as training data and
used to train a new machine learning model to improve the
driving experience. The new driving experience can
improve in areas such as safety, efficiency (power, time,
etc.), comfort, performance, convenience, etc. Once the new
model is trained and validated, the newly trained model is
deployed to vehicles where it is used by one or more
machine learning networks to implement the improved
driving features and functionality. New features can include
autonomous or assisted driving features such as autonomous
lane changes, autonomous lane merging onto freeways,
autonomous exiting of freeways, improved detection of
obstacles and road scenarios, and autonomous navigation-
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based driving, among others. In various embodiments, the
machine learning model may be trained on a training plat-
form that utilizes multiple node engines and where each
node engine includes multiple matrix processors and con-
figurable data formats.

[0019] At 101, data is captured for machine learning
training. In some embodiments, as a vehicle is driven, either
by a human, an autonomous driving system, or both, data
corresponding to vehicle driving is captured. The captured
data of vehicle driving conditions may include image sensor
data, vehicle operating parameters (e.g., speed, steering,
etc.), vehicle type information (e.g., left-hand drive, right-
hand drive, vehicle model, etc.), whether autonomous driv-
ing is enabled, the time since the last disengagement of
autonomous driving, obstacles detected, driving conditions,
etc. The data may be captured passively without interfering
with the driving of the vehicle and without requiring driver
assistance.

[0020] In various embodiments, the vehicles may be
equipped with different arrangements of sensors to capture
different forms of data. In some embodiments, the sensor
data may be vision data, ultrasonic data, LiDAR data, or
other appropriate sensor data. For example, an image is
captured from a high dynamic range forward-facing camera.
As another example, ultrasonic data is captured from a
side-facing ultrasonic sensor. In some embodiments, a
vehicle is affixed with multiple sensors for capturing data.
For example, in some embodiments, eight surround cameras
are affixed to a vehicle and provide 360 degrees of visibility
around the vehicle with a range of up to 250 meters.
Different arrangements of camera sensors can include a wide
forward camera, a narrow forward camera, a rear view
camera, forward looking side cameras, and/or rearward
looking side cameras. In some embodiments, additional
ultrasonic and/or radar sensors are used to capture surround-
ing details. For example, twelve ultrasonic sensors may be
affixed to the vehicle to detect both hard and soft objects. An
additional forward-facing radar can also be utilized to cap-
ture data of the surrounding environment. In various
embodiments, radar sensors are able to capture surrounding
detail despite heavy rain, fog, dust, and other vehicles. The
various sensors are used to capture the environment sur-
rounding the vehicle and the captured data is stored for
consideration as training data for a deep learning network.
[0021] Once captured, the captured data from one or more
vehicles is transferred to a machine learning training plat-
form. For example, a vehicle with wireless connectivity,
such as a cellular or WiFi connection, can transfer the data
wirelessly to a machine learning training platform. As
another option, captured data can be downloaded from a
vehicle when the vehicle is being serviced by technicians. In
various embodiments, the captured data from multiple
vehicles, such as a fleet of vehicles, is aggregated at a
machine learning training platform and used as at least one
of the sources for training data.

[0022] At 103, the captured data is prepared for training a
machine learning model. The data captured from vehicles at
101 is prepared as training data. In some scenarios the data
is separated into training and validation data. The prepara-
tion of the data may include selecting (or culling) the
captured data to identify particularly good training data. In
some embodiments, the data is annotated to identify features
for training. For example, lane markers, traffic lights, traffic
signs, vehicles, pedestrians, etc. may be annotated to
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enhance the usefulness of the training data as part of data
preparation. As another example, the data may be converted
to different formats or pre-processed as part of the prepara-
tion process. In some embodiments, the data may be con-
verted from a source data format to a format compatible with
a matrix processor. For example, data captured as fixed-
point data may be converted to floating-point data for
increased precision.

[0023] At 105, a machine learning model is trained. Using
the training data prepared at 103, one or more machine
learning models are trained. The training may utilize both a
training and a validation data set. In some embodiments, the
training utilizes a machine learning platform that is made up
of multiple node engines and where each node engine
includes multiple matrix processors. By utilizing multiple
node engines, for example, organized into a mesh or another
appropriate architecture, a complex machine learning train-
ing problem can be parallelized and performed more quickly
and efficiently. Similarly, since each node engine includes
multiple matrix processors, each node can perform multiple
matrix operations in parallel. In some embodiments, by
operating multiple matrix processors in parallel, a node
engine can output the result of a matrix multiplication every
clock cycle. The delay waiting for data reads is significantly
reduced, the delay between matrix multiplication results is
significantly reduced, and the performance bandwidth is
significantly increased.

[0024] The result of the training is one or more trained
machine learning models. In some embodiments, multiple
models are trained, each for potentially different neural
networks. For example, one machine learning model may be
trained to utilize as input the sensor data from a forward
facing camera and another model may be trained to utilize
as input the sensor data from a side-facing ultrasonic sensor.

[0025] At 107, the trained machine learning model is
distributed. For example, the trained model is distributed to
and installed onto vehicles. The model may be installed via
an over-the-air update, by a technician while servicing a
vehicle, or another means. In certain situations, the model is
packaged in a data format for easy installation on a vehicle.
For example, the model may be compressed to minimize the
time and bandwidth required to transmit the model to a
vehicle. In some embodiments, multiple models, for
example, each for a different neural network engine running
on the vehicle, may be packaged together and transmitted as
a single package to the vehicle.

[0026] At 109, the trained machine learning model is
applied. For example, a new model is utilized by a convo-
Iutional neural network on the vehicle to process sensor data
and to implement autonomous driving or driver assisted
features. In some embodiments, more than one model is
applied and/or more than one neural network is utilized. For
example, on some vehicles, multiple neural networks are
utilized to process the different data from different sensors.
Once the new model is utilized, data can be captured
reflecting the performance of the new model and used for
future training. The process of FIG. 1 can be utilized to
continuously improve the performance of a machine learn-
ing network. In this manner, the processing loops back to
101 where data is captured. The data can be analyzed to
identify difficult use cases for the currently deployed model
and the corresponding captured data can be utilized for
future training.
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[0027] FIG. 2 is a block diagram illustrating an embodi-
ment of a system for training a machine learning model.
Using the training system of FIG. 2, a machine learning
model can be trained for implementing autonomous and/or
driver assisted driving functionality. In some embodiments,
the training system of FIG. 2 is used to perform the process
of FIG. 1. In the example shown, the training system utilizes
certain training-related sub-systems of vehicle sub-systems
201 located on a vehicle. The training related sub-systems
communicate with the server-side of the training system
located in one or more training data centers 221. Vehicle
sub-systems 201 includes sensors 203, deep learning net-
work 205, Al processor 207, vehicle control module 209,
network interface 211, vehicle data capture system 213, and
capture data store 215. Additional vehicle sub-systems may
exist, for example, to perform other functionality, but are not
shown. Training data center(s) 221 includes training plat-
form 223, training data store 227, and model data store 229.
Training platform 223 includes at least one or more node
engines 225. The node engines are connected (e.g., in a
mesh-like network) to perform parallelized processing for
machine learning training. In some embodiments, training
platform 223, training data store 227, and model data store
229 are located in a single data center but may also be
distributed or replicated across multiple data centers.

[0028] In some embodiments, a vehicle (not shown)
includes vehicle sub-systems 201 to implement autonomous
and driver-assisted functionality and to capture data that can
be used to train one or more machine learning models for
implementing and/or improving the functionality and/or
new features. In various embodiments, the different vehicle
sub-systems may be communicatively connected. For
example, sensor data from sensors 203 is fed to vehicle data
capture system 213 for storage in capture data store 215. The
captured data is sent to training platform 223 via network
interface 211. As another example, sensor data from sensors
203 is fed to deep learning network 205 running on Al
processor 207. The output of deep learning network 205
running on Al processor 207 is fed to vehicle control module
209. In various embodiments, network interface 211 is a
wireless network interface such as one that includes WiFi
and/or cellular network connectivity. Network interface 211
is used to communicate with remote servers, to make phone
calls, to send and/or receive text messages, to transmit
sensor data to training platform 223, etc. In some embodi-
ments, vehicle sub-systems 201 may include additional or
fewer sub-systems as appropriate. For example, in some
embodiments, an image pre-processor (not shown) is uti-
lized for pre-processing captured sensor data. As another
example, in some embodiments, a post-processing compo-
nent (not shown) is used to perform post-processing on the
output of deep learning network 205 before the output is
provided to vehicle control module 209. In some embodi-
ments, a trigger classifier component (not shown) is used to
identify driving data as potential training data.

[0029] In some embodiments, sensors 203 include one or
more sensors. The sensors 203 may be affixed to a vehicle,
at different locations of the vehicle, and/or oriented in one or
more different directions. For example, sensors 203 may be
affixed to the front, sides, rear, and/or roof, etc. of the vehicle
in forward-facing, rear-facing, side-facing, etc. directions. In
some embodiments, sensors 203 may be image sensors such
as high dynamic range cameras. In some embodiments,
sensors 203 include non-visual sensors. Sensors 203 may
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include radar, LiDAR, and/or ultrasonic sensors, among
others. In certain embodiments, sensors 203 are not mounted
to the vehicle with vehicle control module 209. For example,
sensors 203 may be mounted on neighboring vehicles and/or
affixed to the road or environment and are included as part
of a system for capturing sensor data.

[0030] In some embodiments, deep learning network 205
is a deep learning network for implementing autonomous
vehicle control. For example, deep learning network 205
may be an artificial neural network such as a convolutional
neural network (CNN) that is trained using sensor data and
its output is provided to vehicle control module 209. The
machine learning model used by deep learning network 205
may be trained using the system of FIG. 2.

[0031] In some embodiments, artificial intelligence (AI)
processor 207 is a hardware processor for running deep
learning network 205. In some embodiments, Al processor
207 is a specialized Al processor for performing inference
using a convolutional neural network (CNN) on sensor data.
Al processor 207 may be optimized for the bit depth of the
sensor data and/or optimized for deep learning operations
such as neural network operations including convolution,
dot-product, vector, and/or matrix operations, among others.
In some embodiments, Al processor 207 is implemented
using a graphics processing unit (GPU). In various embodi-
ments, Al processor 207 is coupled to memory that is
configured to provide the Al processor with instructions
which when executed cause the Al processor to perform
deep learning analysis on the received input sensor data and
to determine a machine learning result used to at least in part
autonomously operate a vehicle.

[0032] In some embodiments, vehicle control module 209
is utilized to process the output of artificial intelligence (AI)
processor 207 and to translate the output into a vehicle
control operation. In some embodiments, vehicle control
module 209 is utilized to control the vehicle for autonomous
driving and can adjust the speed and/or steering of the
vehicle. For example, vehicle control module 209 may be
used to control a vehicle by braking, steering, changing
lanes, accelerating, and merging into another lane, etc. In
some embodiments, vehicle control module 209 is used to
control vehicle lighting such as brake lights, turns signals,
headlights, etc. In some embodiments, vehicle control mod-
ule 209 is used to control vehicle audio conditions such as
the vehicle’s sound system, playing audio alerts, enabling a
microphone, enabling the horn, etc. In some embodiments,
vehicle control module 209 is used to control notification
systems including warning systems to inform the driver
and/or passengers of driving events such as a potential
collision or the approach of an intended destination. In some
embodiments, vehicle control module 209 is used to adjust
sensors such as sensors 203 of a vehicle. For example,
vehicle control module 209 may be used to change param-
eters of one or more sensors such as modifying the orien-
tation, changing the output resolution and/or format type,
increasing or decreasing the capture rate, adjusting the
captured dynamic range, adjusting the focus of a camera,
enabling and/or disabling a sensor, etc. In various embodi-
ments, vehicle control module 209 is used to implement
self-driving and/or driver-assisted control of a vehicle.
[0033] In some embodiments, network interface 211 is a
communication interface for sending and/or receiving data
including captured sensor data. In various embodiments, a
network interface 211 includes a cellular or wireless inter-
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face for interfacing with remote servers, such as training
platform 223, to connect and make voice calls, to send
and/or receive text messages, to transmit sensor data, to
receive updates to the autonomous driving system including
newly training machine learning models, etc. For example,
network interface 211 may be used to receive an update for
the instructions and/or operating parameters for sensors 203,
deep learning network 205, Al processor 207, vehicle con-
trol module 209, and/or vehicle data capture system 213. For
example, a machine learning model of deep learning net-
work 205 may be updated using network interface 211. As
another example, network interface 211 may be used to
update firmware of sensors 203 and/or operating parameters
of vehicle data capture system 213 such as filters and/or
parameters for determining the type and amount of data to
capture.

[0034] In some embodiments, vehicle data capture system
213 and capture data store 215 are used for capturing and
storing data associated with vehicle driving conditions. The
data captured by vehicle data capture system 213 is stored in
capture data store 215. Capture data store 215 may be
implemented using any appropriate data store such as a hard
drive, non-volatile memory, etc. In some embodiments,
capture data store 215 is implemented using a database, a file
system, or another means for organizing the data. The
captured data of vehicle driving conditions may include
image sensor data, vehicle operating parameters (e.g., speed,
steering, etc.), vehicle type information (e.g., left-hand
drive, right-hand drive, vehicle model, etc.), whether
autonomous driving is enabled, the time since the last
disengagement of autonomous driving, obstacles detected,
driving conditions, etc. The data may be captured passively
without interfering with the driving of the vehicle and
without requiring driver assistance. Data captured by vehicle
data capture system 213 includes data captured from sensors
203.

[0035] In some embodiments, vehicle data capture system
213 communicates with training platform 223 via network
interface 211. Network interface 211 may be a wireless
network such as a WiFi and/or cellular network. Vehicle data
capture system 213 utilizes network interface 211 to transmit
captured data stored in capture data store 215 to training
platform 223. In some embodiments, network interface 211
is utilized to download a trained machine learning model for
installation in deep learning network 205 running on the
vehicle.

[0036] In the example of FIG. 2, the server-side compo-
nents of the training system are located in one or more data
centers of training data center(s) 221 and include training
platform 223, training data store 227, and model data store
229. Training platform 223 includes one or more computer
servers for receiving captured data from vehicle data capture
system 213. Training platform 223 is communicatively
connected to vehicle data capture system 213 via wireless
network interface 211 through a computer network, such as
a wired or optical network, of training data center(s) 221.
Training platform 223 further includes one or more node
engines 225. For example, multiple node engines 225 may
be connected in a mesh network. Training platform 223
receives captured data from vehicle data capture system 213,
processes the data into usable training (and validation) data,
and utilizes node engines 225 for training one or more new
machine learning models. Training data store 227 is used for
storing the received captured data from one or more
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vehicles. In some embodiments, processed captured data
used as training data including annotated data is stored in
training data store 227. Once training is completed, model
data store 229 is used to store the trained machine learning
model. For example, different versions of trained machine
learning models may be stored in model data store 229 and
utilized to determine the relative functionality of the differ-
ent models and to identify areas of improvement. In some
embodiments, one or more data stores are used to implement
training data store 227 and model data store 229.

[0037] In some embodiments, node engines 225 includes
multiple connected nodes that can be used to parallelize
computational tasks. Each connected node includes at least
one, and possibly more than one, matrix processor. For
example, a single node may include eight matrix processors,
each capable of determining at least one matrix multiplica-
tion result. In some embodiments, a matrix multiplication
result takes a single matrix processor at least a minimum
number of clock cycles to compute. By scaling each node to
include multiple matrix processors, after an initial delay
corresponding to the minimum number of clock cycles to
compute a matrix multiplication, a node can output the result
of one matrix multiplication each clock cycle. For example,
in the event a matrix multiplication takes eight clock cycles
to complete, after an initial delay of seven clock cycles, a
node with eight matrix processors can determine the result
of a matrix multiplication every clock cycle. In various
embodiments, the throughput is further determined by
memory access including the latency in accessing matrix
operands. In various embodiments, the node engines are able
to perform matrix computations using a variety of number
formats. For example, a node can utilize fixed-point and
floating-point number formats. With respect to floating-point
formats, the node is configurable to operate in multiple
formats such as 8-bit, 16-bit, and 32-bit formats. For each
bit-depth, one or more different formats may be selected.
Depending on the computational goal, a different format
may be used to represent a number value. A format may be
selected to allocate more precision to the mantissa of a
floating-point number and another format may be selected to
allocate more precision to the exponent of a floating-point
number. In some embodiments, the floating-point formats
utilize a configurable bias to further customize computa-
tional operations. The configurability of number formats
allows the training system to target different machine learn-
ing operations, for example, based on expected input, inter-
mediate, and output values. In various embodiments, the
configurability of the node including support for multiple
floating-point formats and floating-point formats using con-
figurable biases greatly improves the bandwidth and perfor-
mance for matrix computational operations without sacri-
ficing precision and accuracy. Similarly, the power
consumption and efficiency is also significantly improved.

[0038] FIG. 3 is a block diagram illustrating an embodi-
ment of a node engine for performing matrix computations.
In the example shown, node engine 300 includes control unit
301, memory 303, load registers 305, post-processing unit
register file 307, multiplexers 309 and 311, matrix proces-
sors 313 and 351-357, output array 315, and post-processing
unit 317. In various embodiments, a node engine may
include multiple matrix processers to compute multiple
matrix operations in parallel. In the example shown, node
engine 300 includes eight matrix processors 313 and 351-
357. Each matrix processor includes a data input array, a
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weight input array, multiple output accumulators, and a
matrix computational unit. In the example shown, matrix
processor 313 includes data input array 321, weight input
array 323, and two output accumulators 329 and 331. The
data and weight input arrays feed input to matrix computa-
tional unit 325. For example, the data in an input array (e.g.,
data input array 321 and/or weight input array 323) is shifted
by a certain number of bytes (e.g., eight bytes) to feed matrix
computational unit 325 over multiple cycles (e.g., eight
successive cycles). In some embodiments, each matrix pro-
cessor includes a single data input array and a single weight
input array. Matrix computation unit 325 includes a matrix
of computational cells such as computational cell 327. An
MxN dimension matrix computational unit includes MxN
computational cells. Each input array is sized to fit an entire
input matrix and each output accumulator is sized to fit an
entire matrix result. In some embodiments, the node engine
supports multiple floating-point formats including the 8-bit
floating-point formats 400 and 410 of FIG. 4 and the 21-bit
floating-point format 500 of FIG. 5. In some embodiments,
node engine 300 is used to perform the processes of FIGS.
1, 6, 7, and/or 8.

[0039] In some embodiments, node engine 300 may
include additional components and additional control lines
that are not shown. For example, node engine 300 may
include additional registers such as scalar registers, one or
more memory cache(s), data formatters for formatting val-
ues for the matrix processors, and additional control lines
from control unit 301 to sub-components such as multiplex-
ers 309 and 311 and matrix processors 351-357, as a few
examples. In some embodiments, certain registers (not
shown) are dedicated for storing configurable parameters
such as number formats and configurable biases for floating-
point numbers. In some embodiments, the buses that connect
the different components of node engine 300 are wide-data
buses. The size of the bus may be selected to optimize for
transferring matrix values. For example, the buses may all
be 64-bytes wide. This allows an 8x8 matrix of 64 1-byte
elements to be transferred from memory, to a register, to the
matrix processor, etc., as a contained unit.

[0040] In the example shown, control unit 301 is commu-
nicatively connected to one or more components of node
engine 300 including memory 303, matrix processor 313,
output array 315, and post-processing unit 317. Although not
shown, control unit 301 is also communicatively connected
to each of the remaining matrix processors 351-357. In
various embodiments, control unit 301 is used to synchro-
nize the processing of computational operations including
matrix operations and post-processing operations (such as
vector operations) and/or access of memory and registers.
For example, control unit 301 sends signals to matrix
processor 313 to schedule a matrix computation instruction
and may monitor a ready signal from matrix processor 313
to indicate when a new instruction can be received and/or
when a matrix operation has completed and a matrix result
is ready.

[0041] In some embodiments, memory 303 is a memory
module for storing the input operands and output results of
matrix computations and post-processing computations.
Memory 303 may include one or more caches (not shown).
In the example shown, memory 303 is connected to load
registers 305, multiplexers 309 and 311, and post-processing
unit register file 307. Additional or fewer connections are
possible depending on the flexibility needed in storing and
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retrieving data to and from memory. As shown, data can be
read to and from memory into and from load registers 305
and post-processing unit register file 307. The connection to
the registers allows data values to be quickly stored in a
register, for example, as arguments for a matrix or vector
computation. Memory 303 is also connected to multiplexers
309 and 311 so that input matrices can be retrieved from
memory. In some embodiments, memory access to memory
303 is controlled by a memory arbiter (not shown) to
optimize memory requests, for example, by queuing
memory requests and prioritizing certain memory reads over
others. In some embodiments, memory 303 is static random
access memory (SRAM).

[0042] In some embodiments, node engine 300 includes
registers such as load registers 305 and post-processing unit
register file 307. These registers may be used to optimize
memory access. As a few examples, the registers may be
used to store values retrieved from memory 303, to store
values prior to writing the values into memory 303, to store
input and output values of a matrix processor, and to store
input and output values of a post-processing unit. In some
embodiments, post-processing unit register file 307 is a
register file for post-processing unit 317 and is compatible
with different lane configurations (e.g., 64, 32, and/or 16
lane configurations) of post-processing unit 317. For
example, the registers of post-processing unit register file
307 can be addressed using various byte formats such as
1-byte, 2-byte, and 4-byte values. In some embodiments,
each register is 64-bytes in size and can store 64 1-byte
elements, 32 2-byte elements, or 16 4-byte elements. In
various embodiments, the data formats can be configured
and include various 8-bit, 16-bit, and 32-bit floating-point
formats.

[0043] In some embodiments, multiplexers are used to
select the source of input operands to a matrix processor. In
the example shown, multiplexers 309 and 311 are used to
select the source for a data input matrix and weight input
matrix for matrix processor 313. Depending on the control
signal received at each multiplexer, data can be sourced from
memory 303 or post-processing unit register file 307. In
some embodiments, data sourced from memory 303 is
retrieved via a register of load registers 305. In some
embodiments, multiplexers 309 and 311 are also used to
select the data input matrix and weight input matrix for
matrix processors 351-357. By offsetting the processing of
the multiple matrix processors of a node engine, a single pair
of multiplexers is used to select the input for all matrix
processors of the node engine. In various embodiments,
multiplexers 309 and 311 are used to control which matrix
processor receives which matrix operands. Depending on
the configuration, a single matrix processor, a subset of all
matrix processors, or all matrix processors receive the
selected matrix operands. In the alternative embodiments,
node engine 300 includes additional multiplexers (not
shown) dedicated to each of matrix processors 351-357.

[0044] In some embodiments, matrix processor 313
receives a matrix operation instruction and performs a
matrix computation such as a matrix multiplication. For
each matrix instruction, matrix processor 313 stores one or
more matrix operands in one or more input arrays. For
example, a data matrix is stored in a data input array, such
as data input array 321, and a weight matrix is stored in a
weight input array, such as weight input array 323. In
various embodiments, the matrix operands are a pair of data
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and weight matrices, a pair of data and gradient matrices, a
pair of weight and gradient matrices, or another appropriate
pair of matrix operands. In various embodiments, matrix
processor 313 is used to compute multiple related matrix
computations as part of the process for computing a matrix
multiplication of matrices that are too large to fit in input
arrays 321 and 323 of matrix processor 313. The results of
the related matrix computations are combined as part of the
process of computing the matrix multiplication of the larger
matrices. In various embodiments, matrix processor 313
interleaves multiple matrix operations (related or not). For
example, matrix processor 313 can interleave performing
one or more related matrix operations on a first pair of
matrices with performing one or more related matrix opera-
tions on a second pair of matrices. For example, matrix
processor 313 can perform a matrix multiplication on matri-
ces W, and D, that are part of (e.g., slices of) larger matrices
W, and D, respectively, and subsequently perform a matrix
multiplication on matrices W, and G, that are part of (e.g.,
slices of) larger matrices Wz and Gyg, respectively. The
matrix multiplication results of matrices W, and D, are
partial results that are used for computing the matrix mul-
tiplication of larger matrices W, and D, and the matrix
multiplication results of matrices W, and G, are partial
results that are used for computing the matrix multiplication
of larger matrices W, and G,. The input matrices W, and D,
and input matrices W, and G, are stored in a pair of weight
and data input arrays, such as arrays 321 and 323. In some
embodiments, separate output accumulators 329 and 331,
respectively, are used to accumulate the intermediate and/or
final results of W *D, and the intermediate and/or final
results of W,*G,. For example, output accumulator 329 is
used to accumulate the intermediate and/or final results of
the matrix multiplications associated with matrices W, and
D, and output accumulator 331 is used to accumulate the
intermediate and/or final results of the matrix multiplications
associated with matrices W, and G,.

[0045] In some embodiments, data input array and weight
input array are sized to fit an entire matrix in linearized form.
For example, a matrix processor capable of performing a
matrix multiplication on two matrices sized MxN and NxO
has an input array of size MxN elements and another input
array of size NxO elements for receiving the corresponding
MxN and NxO input matrices. In some embodiments, a
matrix processor performs computations on two 8x8 matri-
ces and weight input array and data input array are each
sized to receive 64 elements. Similarly, output accumulators
are sized to store an entire result matrix. An output accu-
mulator used for storing the result of a matrix multiplication
between two matrices sized MxN and NxO is sized to
receive MxO elements. In some embodiments, a matrix
processor performs computations on two 8x8 matrices and
stores the intermediate and final matrix results in an accu-
mulator sized to fit 64 elements corresponding to an 8x8
result matrix.

[0046] In the example shown, the input arrays feed matrix
computation unit 325. Matrix computation unit 325 is made
up of a matrix of computational cells, such as computational
cell 327. Each computation cell is a processing element that
can receive two operands, one element from each input
matrix, and performs a computation, such as a multiplica-
tion, on the two input operands. In some embodiments, the
computation is a multiplication and addition. For example,
the two input elements are multiplied and the result is added
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to the current result in an accumulator and stored back into
the accumulator. In some embodiments, each computational
cell, such as computational cell 327, includes an arithmetic
logic unit for performing arithmetic logic operations such as
a multiply, a divide, an addition, or a subtraction operation.
In some embodiments, multiple operations can be performed
in the same clock cycle, such as a multiply and add operation
needed for performing a partial dot-product. Each compu-
tational cell may include an adder, a multiplier, and/or one
or more accumulators corresponding to one or more pairs of
data and weight input arrays. In some embodiments, each
computational cell, such as computational cell 327, includes
a floating-point multiplier and one or more accumulators.
Although output accumulators 329 and 331 are depicted
separate from computational cell 327 in FIG. 3, in some
embodiments, corresponding portions of output accumula-
tors 329 and 331 are integrated into their respective com-
putational cells. For example, the accumulators of each
computational cell together make up the output accumula-
tors 329 and 331.

[0047] Invarious embodiments, the computational cells of
matrix computation unit 325 support floating-point opera-
tions such as floating-point multiplications and additions. In
various embodiments, each computational cell includes a
multiplier and one or more accumulators to perform a
multiply and addition operating in a single cycle. Prior to the
start of each matrix computation, the designated accumula-
tor may be cleared. During the process of performing a
matrix computation, the designated accumulator is used to
accumulate and store intermediate results. In some embodi-
ments, matrix processor 313 is an 8x8 matrix processor and
matrix computation unit 325 includes 64 computational
cells. Each cycle, 128 elements can be loaded into matrix
computation unit 325, two input elements as operands for
each of the 64 computation cells. Each computation cell also
has access to an accumulator value stored in the designated
accumulator.

[0048] In some embodiments, a matrix multiplication
requires multiple clock cycles to complete. For each clock
cycle, a single row and single column is retrieved from the
input operands. For example, a row is retrieved from the
matrix stored in the data input array and a column is
retrieved from the matrix stored in the weight input array. In
some embodiments, the data is retrieved by shifting the data
in an input array by an entire row or column. Each row and
column is a vector and each vector is copied across the entire
computational unit. Each row is duplicated “down” the rows
of matrix computational unit 325 and each column is dupli-
cated “across” the columns of matrix computational unit
325. For an 8x8 matrix processor, each column of the weight
input matrix is 8-elements and each row of the data input
matrix is 8-elements. For each pass, a single weight column
is duplicated for each of the eight columns of matrix
computational unit 325 and a single data row is duplicated
for each of the eight rows of matrix computational unit 325.
By duplicating the data across and down one row and one
column at a time, an 8x8 matrix processor can complete a
matrix multiplication in 8-cycles. During each cycle, the
intermediate result of multiplication and accumulation is
stored in a designated accumulator. By the eighth and final
cycle, the final matrix result is stored in the designated
accumulator. A matrix processor using different dimensions,
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for example, 4x4 or 16x16 matrices, can be used with
corresponding sized input arrays, accumulators, and com-
putational cells.

[0049] In some embodiments, the input data elements are
8-bit floating-point values. By utilizing 8-bit values, the
bandwidth performance of the matrix processor is signifi-
cantly improved. By utilizing configurable floating-point
values and configurable biases, the precision and accuracy
required for machine learning training is retained and band-
width is increased. Utilizing an 8-bit format, a 64-bytex64-
byte matrix processor can compute a matrix multiplication
for two 8x8 matrices (totaling 128 elements). In contrast,
using a 32-bit format, a 64-bytex64-byte matrix processor
can compute a matrix multiplication for two 4x4 matrices
(totaling only 32 elements). By optimizing the matrix ele-
ments using a configurable 8-bit floating-point format, the
bandwidth for loading matrix elements into a matrix pro-
cessor is improved significantly. Power consumption per
area is also drastically improved. To prevent overflow and
underflow errors, the intermediate and final results stored in
the designated accumulator utilize a larger bit format, such
as a 21-bit, 27-bit, or another appropriate floating-point
format. Using 8-bit elements as input elements and storing
the intermediate results using a 21-bit format preserves the
precision and accuracy required for training while also
maintaining high input bandwidth to the matrix processor. In
various embodiments, each output accumulator stores each
element of the result matrix using a 21-bit floating-point
number, such as format 500 of FIG. 5. In some embodi-
ments, matrix processor 313 is an 8x8 matrix processor that
performs matrix operations using 8-bit floating-point input
values and computes the intermediate and final matrix
results using 21-bit floating-point values. Input arrays are
64-bytes (64 8-bit elements) and output accumulators are
168 bytes (64 21-bit elements). In various embodiments, the
output accumulator is designated by the matrix computation
instruction. Similarly, the 8-bit floating-point format and
exponent bias can be configured by the matrix computation
instruction and/or one or more register arguments.

[0050] In some embodiments, multiple different 8-bit
floating-point formats are supported by matrix processor
313. For example, different formats 400 and 410 are sup-
ported and can be selected based on the computation task.
Each format allocates a different number of bits to represent
the exponent and mantissa of a floating-point number.
Depending on the use case, one or another format is selected.
In the event a high precision number is needed, more bit can
be allocated to the mantissa and a format, such as format 400
with more mantissa bits than format 410, is selected. A
format with more mantissa bits may be selected for per-
forming gradient descent where very small deltas are
required to preserve accuracy. As another example, a format
with more mantissa bits may be selected for performing
forward propagation to compute a cost function. As another
optimization, each floating-point format utilizes a configu-
rable bias. A configurable bias is used to shift the exponent
range. For example, without an exponent bias, an exponent
represented by 3-bits can specify an exponent value between
2° and 27, inclusive. A bias of 5 shifts the range of the
exponents to having an exponent value between 27> and 2*2,
inclusive. As another example, using 4-bits to represent an
exponent and a bias of 15 shifts the range of the exponent
from 2° and 23!, inclusive, to between 271> and 2*1¢, inclu-
sive. In various embodiments, by optimizing the number of
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bits for the exponent field and the number of bits for the bias,
the range expressed using the exponent and the numeric
coverage of the float-point number can be optimized to
preserve accuracy and precision for the expected input and
results.

[0051] In some embodiments, the floating-point format
supports denormal numbers. For example, an exponent field
having a value of zero does not require a normalized
mantissa with no leading zeros. By supporting denormal
numbers, the exponent range and the number of values that
can be represented is increased. In various embodiments,
each computational cell, such as computational cell 327,
includes support for performing floating-point operations
using one or more denormal operands.

[0052] In some embodiments, the value of the configu-
rable bias is limited by the number of bits used to represent
the configurable bias. For example, a 3-bit configurable bias
can have eight different values (0 through 7, inclusive). In
some embodiments, as an optimization, the values repre-
sented by the configurable bias are not consecutive. For
example, the eight values represented by a 3-bit configurable
bias are not limited to the values O through 7. Instead, the
biases are selectable from 8 different values. For example, a
configurable bias can be selected from eight pre-determined
values: 1,3,5,7,9, 11, 15, and 17. In some embodiments,
the pre-determined values are determined based on the most
useful biases. The pre-determined values may be selected at
least in part to maximize the range and minimize the overlap
between the ranges for different biases. In some embodi-
ments, the configurable bias is specified by the matrix
processor instruction and/or stored in a register (not shown).
In some embodiments, the configurable bias is reconfigu-
rable. For example, after performing an arithmetic opera-
tion, the configurable bias can be reconfigured to adjust to
the new range of the result. In some embodiments, the
reconfiguration is specified as part of the computational
instruction. For example, the instruction may specify a new
bias that is used to reconfigure the configurable bias.
[0053] In some embodiments, the computational cells of
the matrix computational unit can be grouped to also support
matrix operations for a larger input number format. For
example, the computational cells of an 8x8 matrix compu-
tational unit that each operate on 8-bit floating-point matrix
elements as input can be grouped to perform 4x4 matrix
operations using 16-bit floating-point matrix elements as
input. In some embodiments, the output accumulators are
sized to prevent the loss of accuracy in the quantized result.
For example, a 16-bit floating-point format using a single bit
for a sign bit, 8-bits for the exponent, 7-bits for the mantissa,
and a non-configurable exponent bias utilizes a 27-bit inter-
mediate floating-point format for floating-point results. A
27-bit floating-point format may allocate a single bit for a
sign bit, 9-bits for the exponent, and 17-bits for the mantissa.
Support for the grouped operation mode makes the matrix
computational unit more versatile in part by supporting more
operand formats.

[0054] In various embodiments, the grouped operation
mode performs matrix operations by splitting an input
operand into multiple components and providing each split
component to a different computational cell of the group.
Each split component is represented as a floating-point
number and when added together, the different split com-
ponents total the original operand. For example, an input
operand is split into the most significant bits (i.e., a high
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component) and the least significant bits (i.e., a low com-
ponent) of the operand. In various embodiments, the expo-
nent of the high component uses the same exponent value of
the input operand whereas the exponent of the low compo-
nent is adjusted to account for subtracting the most signifi-
cant bits from the input operand. In some embodiments, the
component for the least significant bits is normalized. In
some embodiments, a computational cell supports denormal
numbers and the component can be represented as a denor-
mal number.

[0055] In various embodiments, when performing a mul-
tiplication on two input operands using an operand number
format twice the size of the computational cell format (e.g.,
16-bit floating point operands instead of 8-bit floating point
operands), four computational cells are grouped together
and each input operand has a corresponding high and low
component. The high and low components of each input
operand are provided to processing elements by pairing
high-high, high-low, low-high, and low-low components
and providing the different pairs to different computational
cells of the group. At each computational cell of the group,
a matrix multiplication is performed and the result stored in
an output accumulator associated with the computational
cell. In some embodiments, the output accumulator utilizes
a floating-point format with a higher number of bits than the
original input operand. For example, the output accumulator
may utilized 27-bits for 16-bit input operands that do not
have a configurable exponent bias. When the output results
of the grouped cells are added together, the result is the
matrix multiplication of the original input operands. In some
embodiments, the results are moved out of the matrix
computational unit and added together using a post-process-
ing unit such as a vector computational unit. For example, a
floating-point add instruction is used to add the component
results to determine a multiplication result. A floating-point
vector add instruction can be used to add the components for
a vector of results. In various embodiments, the matrix
computation unit is matrix computation unit 325 of FIG. 3
and the post-processing unit is post-processing unit 317 of
FIG. 3.

[0056] In some embodiments, node engine 300 includes
multiple matrix processors 313 and 351-357. The function-
ality and components of matrix processors 351-357 are
described with respect to matrix processor 313. In some
embodiments, each matrix processor requires at least a
minimum number of cycles to complete a matrix multipli-
cation, for example, eight cycles for an 8x8 matrix proces-
sor. By incorporating multiple matrix processors in a single
node engine, matrix multiplications can be distributed to
different matrix processors. The resulting output can be
staggered to read a matrix result from a different matrix
processor each cycle. For a set of eight 8x8 matrix proces-
sors, each matrix processor can output a matrix result every
eight cycles. Staggering the processors allows a matrix
result every clock cycle from a different processor. In some
embodiments, a different sized matrix processor, for
example, a 4x4 or a 16x16 processor, can be used. Similarly
a different number of matrix processors can be included in
the node engine based on the depth of the matrix processor
computation pipeline.

[0057] In some embodiments, a matrix instruction speci-
fies a particular matrix operation, a particular matrix pro-
cessor, designates an accumulator for storing the matrix
result, and specifies the location of the matrix operands. The
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location of the matrix operands may be specified using a
register value or a memory address. For example, a matrix
instruction may specify a matrix multiplication, matrix
multiplication processor 313, output accumulator 329, a
register of post-processing unit register file 307, and a
memory address of memory 303. In some embodiments,
control unit 301 issues matrix instructions. In some embodi-
ments, operations include matrix multiplication, matrix
addition, dot-product, matrix inverse, etc. In some configu-
rations, the output accumulators of each matrix processor
uniquely identify a matrix processor. By specifying a par-
ticular output accumulator as part of the matrix instruction,
the matrix processor is inherently selected. For example,
using an AO-A1l naming scheme for accumulators, the first
and second output accumulators (e.g., A0 and Al) are
mapped to matrix processor 313, the third and fourth output
accumulators (e.g., A2 and A3) are mapped to matrix
processor 351, the fifth and sixth output accumulators (e.g.,
A4 and AS) are mapped to matrix processor 352, and so
forth. In the example, accumulators 329 and 331 are refer-
enced as AQ and A1, respectively. A matrix multiply instruc-
tion specifying accumulator A1 is issued to matrix processor
313 since only matrix processor 313 can store results to
accumulator Al.

[0058] In some embodiments, output array 315 is used to
retrieve the results of one or more matrix processors. In
some embodiments, output array 315 includes a multiplexer
to determine from which matrix processor to load a result
into the output array. In some embodiments, the output array
is a 64-byte array and requires two move instructions to
move a matrix result from a matrix processor into the output
array. For example, a matrix result using 21-bit floating-
point values requires 168 bytes. Each 21-bit floating-point
value is converted during a move command to a 16-bit
floating-point value. Using only two move instructions, a
result matrix of 64 elements is converted from 64 21-bit to
64 16-bit floating-point values. For example, a move high
instruction moves the highest 32-elements into the output
array and a move low instruction moves the remaining
lowest 32-elements into the output array. In various embodi-
ments, the output array is 64-bytes so the result of the first
move is first stored in a register (such as a register of
post-processing unit register file 307) before the second
move is performed. In various embodiments, the output
array is a temporary output array until the values are moved
to the memory or register. In some embodiments, the move
instructions are non-destructive and do not clear the matrix
result from the matrix processor, for example, by clearing
the source accumulator.

[0059] In some embodiments, post-processing unit 317 is
used to perform post-processing such as normalization,
scaling, activation functions, pooling, etc. In some embodi-
ments, post-processing unit 317 is a vector computational
engine that operates on each element of a vector. The
post-processing unit may utilize different number formats
such as 1-byte, 2-byte, and 4-byte number formats including
float-point number formats. In some embodiments, the num-
ber of lanes of the post-processing unit 317 can be config-
ured. For example, a post-processing unit 317 that takes a
64-byte vector can operate on 64 1-byte elements, 32 2-byte
elements, or 16 4-byte elements corresponding to 64, 32, and
16 lane configurations. In the example shown, post-process-
ing unit 317 utilizes post-processing unit register file 307 for
retrieving data for input and for storing post-processing
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results. In some embodiments, additional post-processing
units (not shown) may be included in the node engine as
necessary to perform additional machine learning function-
ality.

[0060] FIG. 4 is a block diagram illustrating embodiments
of an 8-bit floating-point format. In the example shown,
8-bit floating-point formats 400 and 410 are different 8-bit
floating-point formats for representing a floating-point num-
ber using a sign, mantissa, and exponent. In some embodi-
ments, a node engine such as node engine 300 and a matrix
processor such as matrix processor 313 of FIG. 3 utilize
8-bit floating-point formats 400 and 410 for matrix opera-
tions. By performing matrix operations using 8-bit floating-
point formats, such as formats 400 and 410, instead of a
16-bit, 32-bit, or another floating-point format, the band-
width of the matrix processor is significantly increased. In
some embodiments, the formats 400 and 410 support a
configurable bias. The configurable bias allows for a greater
range in representing the exponent for improved accuracy
while still maintaining the 8-bit data size. In some embodi-
ments, the floating-point formats 400 and 410 supports
denormal numbers to increase the number of values that can
be represented.

[0061] In the example shown, 8-bit floating-point format
400 includes a single bit for sign bit 401, 4-bits for exponent
403, and 3-bits for mantissa 405. Sign bit 401, exponent 403,
and mantissa 405 take up a total of 8-bits and can be used
to represent a floating-point number. Similarly, 8-bit float-
ing-point format 410 includes a single bit for sign bit 411,
5-bits for exponent 413, and 2-bits for mantissa 415. Sign bit
411, exponent 413, and mantissa 415 take up a total of 8-bits
and can be used to represent a floating-point number. In
some embodiments, a configurable bias is used to bias the
exponent. For example, the 4-bit exponent 403 of format
400 allows exponent 403 to have 16 different values (i.e.,
values 0 through 15, inclusive). Using 4-bits with no bias (or
the equivalent of a configurable bias set to zero), exponent
403 can represent an exponent with values 2° through 2%,
corresponding to an exponent field with values 0 and 15,
respectively. By using a configurable bias, the range of the
exponent can be shifted. For example, using a configurable
bias set to a value of 5, exponent 403 can represent an
exponent with values 2> through 2'°. In various embodi-
ments, the value of the configurable bias is limited by the
number of bits used to represent the configurable bias. For
example, a 3-bit configurable bias can have eight different
values. In some embodiments, the values represented by the
configurable bias are not consecutive. For example, the eight
values represented by a 3-bit configurable bias are not
limited to the values O through 7. Instead, the biases are
selectable from 8 different values. For example, a configu-
rable bias can be selected from eight pre-determined values:
1,3, 5,7, 9, 11, 15, and 17. In some embodiments, the
pre-determined values are determined based on the most
useful biases. In some embodiments, the pre-determined
values are selected at least in part to maximize the range of
the exponent and to minimize the overlap between the
ranges for different biases. In some embodiments, the con-
figurable bias is specified by the matrix processor instruction
and/or stored in a register (not shown).

[0062] In various embodiments, multiple different 8-bit
floating-point formats, such as formats 400 and 410, are
supported by a matrix processor. By supporting multiple
formats, the precision can be utilized in either the exponent
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or the mantissa. For example, certain operations such as
gradient descent may require additional precision and thus a
greater number of bits for the mantissa. As another example,
more bits can be used for the mantissa for operations where
the values are clustered close together and do not need
additional range for exponents. In contrast, for certain
operations, the range of values may be greater and a larger
range for the exponent is needed. Using format 410, fewer
bits are dedicated for the mantissa and more are dedicated
for the exponent. In some embodiments, the format is
specified by the matrix processor instruction and may be
stored in a register (not shown). In various embodiments,
additional floating-point formats not depicted may be sup-
ported. For example, a 4-bit mantissa and 3-bit exponent
format may be supported (not shown).

[0063] FIG. 5 is a block diagram illustrating an embodi-
ment of a 21-bit floating-point format. In the example
shown, floating-point format 500 is a 21-bit floating-point
format for representing a floating-point number using a sign,
mantissa, and exponent. In some embodiments, a node
engine such as node engine 300 and a matrix processor such
as matrix processor 313 of FIG. 3 utilize a 21-bit floating-
point format, such as format 500, for certain matrix opera-
tions, such as for storing the results (and intermediate
results) of matrix multiplications and/or matrix additions. In
some embodiments, format 500 is used by accumulators for
a matrix processor, such as output accumulators 329 and 331
of FIG. 3. For example, the multiplication result of two 8-bit
multiplication operands may cause an overflow or underflow
error if the result is limited to the same 8-bit format. Using
a format larger than 8-bits for the result prevents overtlow
and underflow errors. Similarly, using a 21-bit floating-point
format to store intermediate and final results when comput-
ing matrix multiplication with 8-bit matrix elements pre-
vents overflow or underflow errors. Using a result with a
bit-depth smaller than 32-bits increases the efficiency of
memory usage. In various embodiments, format 500 with a
bit-depth of 21-bits is used to optimize for both memory
usage and accuracy. In some embodiments, the format 500
supports a configurable bias. The configurable bias allows
for a greater range for improved accuracy while still main-
taining the 21-bit data size. In some embodiments, the
configurable bias is specified by the matrix processor
instruction and/or stored in a register (not shown).

[0064] In the example shown, 21-bit floating-point format
500 includes a single bit for sign bit 501, 7-bits for exponent
503, and 13-bits for mantissa 505. Sign bit 501, exponent
503, and mantissa 505 take up a total of 21-bits and can be
used to represent a floating-point number. In some embodi-
ments, a configurable bias is used to bias the exponent. For
example, the 7-bit exponent 503 of format 500 allows
exponent 503 to have 128 different values (i.e., values 0
through 127, inclusive). Using 7-bits with no bias (or the
equivalent of a configurable bias set to zero), exponent 503
can represent an exponent with values 2° through 2'%7,
corresponding to an exponent field with values 0 and 127,
respectively.

[0065] In various embodiments, format 500 is used by one
or more accumulators, such as output accumulators 329 and
331 of FIG. 3, of a matrix processor for a node engine, such
as node engine 300 and matrix processor 313 of FIG. 3. In
some embodiments, a register (not shown) is used to store a
setting for the configurable bias used for storing a floating-
point number in a particular accumulator. In some embodi-
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ments, multiple 21-bit formats (e.g., with different alloca-
tions of bits for exponent and mantissa fields) may be used
and the particular format is specified by the matrix processor
instruction. The value for the configurable bias may be
specified using the matrix processor instruction and/or
stored in a register.

[0066] Although FIG. 5 depicts a 21-bit floating-point
format that can be used by accumulators for a matrix
processor, such as output accumulators 329 and 331 of FIG.
3, formats with alternative bit-depths may be used. For
example, depending on the operating requirements, such as
requirements for preventing loss of accuracy, a 27-bit float-
ing-point format may be used to prevent the loss of accuracy
in quantized results when supporting operations on certain
16-bit floating point operations. As one example, a 27-bit
floating-point format may include a single bit for a sign bit,
9-bits for the exponent, and 17-bits for the mantissa. A 27-bit
floating-point format may be used to accumulate multipli-
cation operations on 16-bit floating-point operands. In some
embodiments, a 16-bit floating-point operand is represented
with a single bit for a sign bit, 8-bits for the exponent, and
7-bits for the mantissa.

[0067] FIG. 6 is a flow diagram illustrating an embodi-
ment of a process for performing matrix computations. The
process of FIG. 6 is used by a training platform such as
training platform 223 of FIG. 2 to perform matrix compu-
tations by one or more node engines, such as node engines
225 of FIG. 2 or node engine 300 of FIG. 3. In some
embodiments, a training platform receives one or more
matrix computation operations and parallelizes the opera-
tions across different node engines. Each node engine may
then also parallelize its operations across different matrix
processors. The results may be combined, as appropriate, at
one or more node engines to determine a result, such as a
matrix of weights for a machine learning model. In some
embodiments, the process of FIG. 6 is performed as part of
step 105 of FIG. 1.

[0068] At 601, a computational instruction is received. In
some embodiments, the computational instruction is
received by a training platform such as training platform 223
of FIG. 2. The training platform processes the computational
instruction and performs the necessary division and distri-
bution of work to different node engines. For example, a
computational instruction requesting a convolution of an
image with a filter is received at a server of the training
platform initiating a machine learning training process. In
some embodiments, the instruction may include the neces-
sary parameters to perform the computational instruction
including the operations involved and the operands. For
example, the instruction may include the size of the input
operands (e.g., the size of each input matrix), the start
address of each input matrix, a stride parameter, a padding
parameter, and/or matrix, vector, and/or post-processing
commands. For example, a computational instruction may
describe an image data size (e.g., 96x96, 1920x1080, etc.)
and bit depth (e.g., 8-bits, 16-bits, etc.) and a filter size and
bit depth, etc. In many scenarios, the matrices of a matrix
computation may be larger than can fit inside a matrix
processor so additional processing may be performed to
subdivide the computation so that it can be performed by
different node engines or matrix processors.

[0069] At 603, matrix operations and operands are deter-
mined. In the event one or more matrices of the computation
instruction received at 601 are larger than the input matrices
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for a matrix processor, the computational instruction of 601
is divided into small component operations. At 603, matrix
operations and operands corresponding to smaller compo-
nent operations are determined and may include slicing,
segmenting, or partitioning the original matrix operands into
smaller matrices and performing matrix operations on the
smaller matrices. The results of the matrix operations on the
smaller matrices may be combined to complete the compu-
tation instruction received at 601. Different node engines
and matrix processors may be assigned to perform different
components of the computational instruction. In some
embodiments, the elements of the matrix operands may be
converted or targeted for conversion to an 8-bit floating-
point format. An 8-bit floating-point format, such as format
400 or format 410 of FIG. 4, is used by a node engine to
increase the processing and performance bandwidth as well
as the power efficiency of the matrix processor. In some
embodiments, a configurable bias for a corresponding float-
ing-point format is or will be selected. For example, a format
with a high-precision mantissa is selected for performing
gradient descent operations.

[0070] In various embodiments, a larger matrix is sliced
into a smaller two-dimensional matrix with a size limited to
the appropriate dimensions of a matrix processor. In some
embodiments, the sliced matrix is a smaller matrix with
addresses to elements referencing the original matrix. The
sliced matrix may be serialized into a vector for processing.
In some embodiments, different slices of the matrix may
overlap with previous slices. In various embodiments, matri-
ces may be sliced only at boundaries corresponding to
multiples of the read buffer size. For example, in the event
each read buffer is 8-bytes in size, each row of a sliced
matrix must begin with an address having a multiple of
eight. In the event a matrix fits within the computational
array, no slicing is required (i.e., the matrix slice used is
simply the original matrix).

[0071] At 605, matrix operations are distributed and per-
formed. For example, the matrix operations corresponding
to the matrix operations and operands determined at 603 are
distributed to one or more node engines and to one or more
matrix processors of the node engines. In various embodi-
ments, the matrix operations are performed by one or more
matrix processors using 8-bit element matrices. The values
for the elements of the matrix results are accumulated into
21-bit, 27-bit, or another appropriate floating-point format.
In various embodiments, the matrix results can be moved out
of the matrix processor in one of several formats including
8-bit, 16-bit, and 32-bit floating-point formats. In various
embodiments, each node engine can perform multiple
matrix operations in parallel by utilizing multiple matrix
processors.

[0072] In some embodiments, references to the matrix
operands are distributed along with the operations to a node
engine. In this manner, the node engine can perform a data
read to load the corresponding elements of the sliced matri-
ces. In some embodiments, the node engine will linearize a
sliced matrix for loading into memory and/or a register
where the input matrix can then be sent to a matrix proces-
sor. In some embodiments, a control unit of the node engine
coordinates the scheduling, issuing, and synchronization of
operations including the loading of sliced matrix operands
(including addressing specified strides, paddings, and other
parameters of the matrix operands) and the operation of the
matrix processors. Once a matrix operation is issued to a
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matrix processor, the matrix processor will take a certain
number of clock cycles to complete the matrix operation. In
some embodiments, the matrix processor performs matrix
operations using the processes of FIGS. 7 and/or 8.

[0073] At 607, post-processing is performed. In some
embodiments, post-processing may be performed by node
engines and may include additional vector operations per-
formed after the completion of a matrix operation. Post-
processing operations can be performed by a post-process-
ing unit, such as a vector processor or vector computational
unit, of the node engine. In some embodiments, vector
post-processing includes performing complex operations
such as arithmetic operations, scaling, normalization, and/or
the application of an activation function such as a rectified
linear unit (ReL.U) function on each element of a vector. In
some embodiments, the elements of the vector may be
converted/formatted to 8-bit, 16-bit, or 32-bit elements
depending on the precision needed. In various embodiments,
the results of the distributed matrix operations by each node
engine may be sent back to or redirected by the training
platform server and used for further processing. For
example, the results of matrix operations distributed and
performed at 605 may be combined and utilized as operands
for additional vector or matrix operations. After post-pro-
cessing is initiated at 607, processing loops back to 601 to
receive additional computational instructions. In some
embodiments, post-processing does not need to complete
before processing loops back to 601 for additional compu-
tational instructions.

[0074] FIG. 7 is a flow diagram illustrating an embodi-
ment of a process for performing matrix computations. The
process of FIG. 7 is used by a matrix processor such as
matrix processors 313 and 351-357 of node engine 300 of
FIG. 3 to perform matrix computations. In some embodi-
ments, each matrix processor of a node engine can perform
the process of FIG. 7 in parallel. For example, matrix
processors 313 and 351-357 each perform the process of
FIG. 7 in parallel on different matrix arguments, although
each may be at a different step for processing to stagger the
completion of their respective operations. In some embodi-
ments, the process is utilized to perform a convolution using
a data matrix and a weight matrix. In some scenarios, the
input matrices are slices of larger matrices. In various
embodiments, the process of FIG. 7 may be initiated by a
matrix computation instruction via a control unit. The
instruction may specify the two matrix operands (e.g., the
memory or register locations of a data and a weight matrix),
a configurable bias, a floating-point format, and a designated
accumulator to store the matrix computation result. In some
embodiments, the designated accumulator is zeroed out
before the matrix computation begins. In some embodi-
ments, the designated accumulator is output accumulator
329 or 331 of FIG. 3. In some embodiments, the process of
FIG. 7 is performed at 605 of FIG. 6.

[0075] At 701, a data input matrix is received. For
example, elements of a data input matrix corresponding to
training sensor data are linearized and stored in a data input
array of a matrix processor. In some embodiments, a data
input matrix is stored in a data input array, such as data input
array 321 of matrix processor 313 FIG. 3. Each data input
array is capable of storing an entire linearized matrix for the
corresponding matrix processor to be processed by the
matrix computational unit. Thus a matrix processor capable
of multiplying two 8x8 matrices uses a data input array
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capable of storing all 64 elements of an input 8x8 data
matrix. For example, in some embodiments, each data input
array is 64 bytes and stores each element as an 8-bit
floating-point number. The format for the floating-point
number may use format 400 or 410 of FIG. 4 and include a
configurable bias. The configurable bias may be specified by
a matrix instruction and/or by a register. The received data
input matrix may be received from a register or from
memory, such as SRAM. In some embodiments, one or more
reads are issued to load the entire data input matrix to the
matrix processor but the entire matrix is not available at
once. For example, for a sliced matrix, data for some rows
(or columns) may require additional delay before the data is
available. Thus the data for the data input array might arrive
piecemeal. In some embodiments, a single read is sufficient
to load the entire data input matrix. In some embodiments,
the data input matrix is a gradient input matrix.

[0076] At 703, a weight input matrix is received. For
example, elements of a weight input matrix corresponding to
machine learning weights of a filter are linearized and stored
in a weight input array of a matrix processor. In some
embodiments, a weight input matrix is stored in a weight
input array, such as weight input array 323 of matrix
processor 313 FIG. 3. Each weight input array is capable of
storing an entire linearized matrix for the corresponding
matrix processor to be processed by the matrix computa-
tional unit. Thus a matrix processor capable of multiplying
two 8x8 matrices uses a weight input array capable of
storing all 64 elements of an input 8x8 weight matrix. For
example, in some embodiments, each weight input array is
64 bytes and stores each element as an 8-bit floating-point
number. The format for the floating-point number may use
format 400 or 410 of FIG. 4 and include a configurable bias.
The configurable bias may be specified by a matrix instruc-
tion and/or by a register. The received weight input matrix
may be received from a register or from memory, such as
SRAM. In some embodiments, one or more reads are issued
to load the entire weight input matrix to the matrix processor
but the entire matrix is not available at once. For example,
for a sliced matrix, weight data for some rows (or columns)
may require additional delay before the weight data is
available. Thus the weight data for the weight input array
might arrive piecemeal. In some embodiments, a single read
is sufficient to load the entire weight input matrix. In some
embodiments, the weight input matrix is a gradient input
matrix.

[0077] At 705, apair of vector arguments is loaded into the
matrix computational unit. From each input matrix, a vector
corresponding to a row and a vector corresponding to a
column are loaded as input arguments into the matrix
computational unit such as matrix computational unit 325 of
FIG. 3. As part of the loading process, the column vector is
duplicated across the entire matrix computation unit and the
row vector is duplicated down the entire matrix computation
unit. For example, an entire vector corresponding to a
column of the weight input matrix is loaded into the com-
putational unit. Each element of the column vector is dupli-
cated across an entire row. Thus each column of an 8x8
matrix computational unit receives the same 8-element
column vector and the value loaded to each cell of a row of
the matrix computation unit is the same. Similarly, an entire
vector corresponding to a row of the data input matrix is
loaded into the computational unit and each element of the
row vector is duplicated down an entire column. Thus each
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row of an 8x8 matrix computational unit receives the same
8-element column vector and the value loaded to each cell
of'a column of the matrix computation unit is the same. For
an 8x8 matrix computational unit, one eighth of the input
matrix elements is loaded. At 705, an unloaded pair of
vectors from each input matrix is loaded into the matrix
computational unit. Each subsequent loop through step 705
loads the next available column and row from the input
weight and data matrices. Thus, an 8x8 matrix requires at
least 8 cycles to complete loading whereas a 4x4 matrix
requires at least 4 cycles to complete loading.

[0078] At 707, values of the loaded vectors are multiplied.
For each computational cell (such as computational cell 327
of FIG. 3) of the matrix computational unit, a matrix
multiplication is performed using the element loaded at the
corresponding computational cell. In various embodiments,
the multiplication is performed on two 8-bit floating-point
values and stored as a higher-bit floating-point value to
prevent overflow and to maintain precision. In some
embodiments, the higher-bit floating-point format is the
21-bit floating-point format of FIG. 5. In some embodi-
ments, the higher-bit floating-point format is a 27-bit float-
ing-point format to further reduce the loss of accuracy in the
quantized result. For an 8x8 matrix computational unit, each
of the 64 computational cells performs a matrix multiplica-
tion.

[0079] At 709, multiplication results are accumulated into
a designated accumulator. For example, the multiplication
results of each computational unit at 707 are each accumu-
lated into one of the accumulators of the matrix processor.
In some embodiments, a matrix processor includes more
than one accumulator, such as the two output accumulators
329 and 331 of FIG. 3. This is beneficial so that the matrix
processor can interleave the operation of different matrix
operations. In some embodiments, each computational cell
includes an accumulator that adds the current value of the
element in the accumulator corresponding to that computa-
tional cell to the result of the cell’s matrix multiplication. In
various embodiments, the accumulator is sized to store an
accumulation result for each element of the matrix. Thus
each accumulator of an 8x8 matrix computational unit has at
least 64 elements. In some embodiments, similar to the
result of multiplication at 707, the elements of the accumu-
lator use a higher-bit floating-point value than the input to
the matrix processor to prevent overflow and to maintain
precision. In some embodiments, the higher-bit floating-
point format is the 21-bit floating-point format of FIG. 5 or
another higher-bit floating-point format. In some embodi-
ments, an accumulator for an 8x8 matrix computational unit
is 168-bytes to allow for 64 elements, each storing a 21-bit
floating point number.

[0080] At 711, a determination is made whether there are
additional vectors remaining for the matrix operation. For
example, in order to multiply two matrices, at most one
column from the weight input matrix and one row from the
data input matrix are loaded for each clock cycle. To
complete the entire matrix multiplication, every column and
every row must be loaded. An 8x8 matrix requires at least
8 cycles to completely load both input matrices into the
matrix computational unit. Similarly, a 4x4 matrix requires
at least 4 cycles to completely load both input matrices into
the matrix computational unit. In the event there are addi-
tional vectors remaining to be loaded, processing continues
back to 705. In the event no additional vectors remain to be
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loaded (both entire input matrices have been loaded), the
matrix multiplication is complete and processing continues
to 713.

[0081] At 713, a matrix result is loaded into an output
array from the designated accumulator. Since the matrix
computation is complete, the matrix result is stored in the
designated accumulator. In some embodiments, the elements
of the matrix are stored in the designated accumulator as
21-bit floating-point values. Thus for an 8x8 matrix, the
accumulator stores 64 values and is 168 bytes in size. In
some embodiments, multiple move operations are needed to
move the result from the accumulator to an output array,
such as output array 315 of FIG. 3. In some embodiments,
the output array and bus to the output array are 64-bytes
wide. The accumulator results are converted from 21-bit
floating-point values into 16-bit floating-point values that
can be stored in two 64-byte components. Using the 8x8
result matrix as an example, two move operations are needed
to move the results from the accumulator of the matrix
processor. For example, a move high operation is used to
move the high bits of the accumulator (corresponding to 32
elements of the matrix) into a 64-bit output array as 16-bit
floating-point values. Once moved in the output array, the 32
elements can be stored in a register, such as one of the
registers of the post-processing unit register file 307 of FIG.
3 or moved to memory. Subsequently a move low operation
is used to move the low bits of the accumulator (correspond-
ing to the remaining 32 elements of the matrix) into the
64-bit output array as 16-bit floating-point values. Once in
the output array, the remaining 32 elements can also be
stored in a register. In various embodiments, two or more
operations are needed to move the matrix results out of the
matrix processor. By converting the 21-bit floating-point
values to 16-bit floating-point values, only two move opera-
tions are needed. In some embodiments, the values can be
moved out as 8-bit, 16-bit, or 32-bit floating-point values. In
the example described, the values are moved out as 16-bit
values for later processing by a post-processing unit such as
a post-processing unit 317 of FIG. 3. In some embodiments,
the post-processing unit is a vector computational engine. In
various embodiments, the output array is connected to
accumulators of each matrix processor of the node engine
and acts as a multiplexer to receive the results of moves
(e.g., high and low move instructions) from the different
matrix processors.

[0082] FIG. 8 is a flow diagram illustrating an embodi-
ment of a process for performing multiple interleaved matrix
computations. The process of FIG. 8 is used by a matrix
processor such as matrix processors 313 and 351-357 of
node engine 300 of FIG. 3 to interleave multiple matrix
computations such as two matrix multiplication operations.
Each of the interleaved matrix computations may be imple-
mented using multiple intermediate matrix multiplications
with the results of the intermediate multiplications being
used to compute the larger matrix computation. To improve
the processing bandwidth and efficiency, the result of each
intermediate matrix multiplication is stored in the matrix
processor and not cleared when interleaving an alternate
matrix operation. The different matrix operations can be
distinct and each have non-overlapping matrix operands.

[0083] In some embodiments, each matrix processor of a
node engine can process more than one matrix operation at
a time, one matrix operation corresponding to each output
accumulator of a matrix processor. In some embodiments,
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the ability to interleave multiple matrix operations allows
matrix multiplication operations on very large matrices to be
performed. The larger matrices are sliced into smaller matri-
ces that fit the input array of the matrix processor and the
results of matrix multiplications of smaller matrices are
combined. In various embodiments, the ability to interleave
multiple matrix operations increases the bandwidth and
performance of the matrix processor by utilizing the matrix
computational unit, for example, while waiting for memory
reads to complete. Thus, when input operands for a pending
matrix operation of a first set of related matrix operations are
not available (e.g., due to the latency of a memory read) but
the input operands for a pending matrix operation of a
second set of related matrix operations are available, the
second set of related matrix operations can utilize the matrix
computational unit. By utilizing multiple accumulators, the
matrix computational unit can switch between multiple
matrix computations by storing intermediate results in accu-
mulators dedicated to particular sets of related matrix opera-
tions. In some embodiments, the data input array is data
input array 321 of FIG. 3, the weight input array is weight
input array 323 of FIG. 3, and the multiple accumulators are
output accumulators 329 and 331 of FIG. 3. Although two
accumulators are shown with respect to matrix processor
313 of FIG. 3, additional accumulators may be included to
allow additional matrix operations to be interleaved.

[0084] The process of FIG. 8 is a specialized variation of
the process of FI1G. 7 that utilizes multiple weight input array
operands, multiple data input array operands, and multiple
output accumulators to support interleaving two matrix
multiplication operations. As described with respect to FIG.
7, the process of FIG. 8 similarly implements the steps of
FIG. 7 including the loading of a column vector across the
matrix computation unit, the loading of a row vector down
the matrix computation unit, the multiplication of operands
by computational cells, and the accumulation of the multi-
plication results in a designated accumulator but takes care
to not intermingle or wipe the intermediate results of the two
interleaved matrix operations. In some embodiments, the
process of FIG. 8 is performed at 605 of FIG. 6.

[0085] At 801, a determination is made whether the matrix
processor can receive an additional matrix operation instruc-
tion. In the example of FIG. 8, the matrix processor is
capable of interleaving two matrix operations. A determina-
tion is made whether there are currently two matrix opera-
tions in the process of being performed. In the event the
matrix processor can receive an additional matrix operation
instruction, processing continues to 803. For example, the
matrix processor can receive an additional matrix operation
instruction since it is in the middle of processing only a
single matrix operation or is idle and not processing any
matrix operations. In the event the matrix processor cannot
receive an additional matrix operation instruction, process-
ing loops back to 801 until the matrix processor is available
to receive a new matrix operation instruction. For example,
the matrix processor is currently in the middle of processing
two matrix operations and cannot receive another operation
until at least one of the current operations completes. In
some embodiments, a ready signal is issued to a control unit
to signal that the matrix processor is ready to receive
additional instructions.

[0086] At 803, the matrix processor receives a matrix
instruction and issues read requests for the associated matrix
operations. For example, a matrix processor receives a
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matrix multiply instruction with two operands correspond-
ing to two input matrices. Reads are issued for the values of
the matrix operands. The values may be read from a register
and/or memory. For example, the matrix arguments may
specify a register and/or an address in memory. In some
embodiments, a memory read may stall the matrix compu-
tation since a memory read may take multiple clock cycles
for the data to be available. In some embodiments, multiple
memory reads may be issued since the matrix is not stored
sequentially in memory. This may be a result of a larger
matrix being sliced into a smaller matrix operand.

[0087] In some embodiments, the instruction received
specifies a particular accumulator to store the matrix result.
In order to interleave multiple matrix operations, each
operation utilizes its own accumulator. The designated accu-
mulator is used to store the intermediate and final matrix
results. In some embodiments, the designated accumulator
stores intermediate results using a higher-bit floating-point
format than the format used for input operands. The higher-
bit format minimizes the loss of accuracy when results are
quantized.

[0088] In various embodiments, when the data corre-
sponding to the matrix operands is available, the values are
received and prepared for the matrix processor. In some
embodiments, the matrix operands are too large for the
matrix processor and multiple intermediate matrix opera-
tions are performed to complete the matrix instruction. In the
event data is not available, the matrix computational unit
may stall and be idle. Instead of remaining idle, a second
matrix operation may be performed as long as data for the
second operation is available.

[0089] At 803, processing continues to both 801 and 805.
The processing loops back to 801 to fetch new instructions
while also simultaneously continuing to 805 to execute the
instruction received at 803. In various embodiments, the
fetching of new instructions happens in parallel with the
processing of the current matrix operations. In some
embodiments, the two processing branches to 801 and 805
are implemented using a pipelined-based approach.

[0090] At 805, a determination is made whether data is
ready for the current matrix operation. For example, the
elements to be loaded from the matrix operands of the
current matrix operation must be available to be loaded to
the computational cells of the matrix computational unit. In
some embodiments, the data loaded into the matrix compu-
tational unit are slices of the matrix operands that are sized
for the input arrays of the matrix computational unit. For the
weight input array, the pending columns of elements must be
ready. For the data input array, the pending rows of elements
must be ready. In the event the elements of weight column
and data rows for the current matrix operation are available,
processing continues to 807. In the event the pending
elements for the current matrix operation are not available,
processing continues to 813. For example, the pending
elements may not be available due to the latency from a
memory read and/or a cache miss. Instead of stalling while
waiting for the data to become available, the matrix com-
putation unit may potentially be utilized for an alternative
matrix operation.

[0091] At 807, the values from the weight columns and
data rows for the current matrix operation are loaded to
corresponding computational cells, compute operations are
performed on the values, and the compute result is accumu-
lated into the designated accumulator. In some embodi-
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ments, the compute operations are multiply operations cor-
responding to multiplying elements from two different
matrices. In some embodiments, the process at 807 is
described with respect to steps 701, 703, 705, 707, 709,
and/or 711 of FIG. 7. For example, the values are loaded as
8-bit floating-point values with a configurable bias. The
result of the computation, such as a multiplication, and the
accumulation is stored as a 21-bit floating-point format in
the first accumulator. In some scenarios, additional configu-
ration related to the matrix operation is performed at 807
such as clearing the accumulator, determining a floating-
point format, and/or determining a configurable bias for a
floating-point format, among others.

[0092] At 809, a determination is made whether matrix
instruction for the current matrix operation is complete. In
the event the matrix instruction is complete, processing
continues to 811. In the event the matrix instruction is not
complete, processing continues to 805 where a determina-
tion is made whether additional data for the current matrix
operation is ready to be loaded and processed by the matrix
computational unit. In some embodiments, the process at
809 is described with respect to step 711 of FIG. 7.
[0093] In some alternative embodiments (not shown), in
the event the matrix instruction is not complete, processing
continues to 813 where a determination is made whether an
alternate matrix operation is pending and whether data for
the pending alternate matrix operation is ready to be loaded
and processed by the matrix computational unit. Under this
alternative embodiment, instead of completing the current
matrix operation, as long as data is available, the matrix
computational unit continuously alternates back and forth
between two different matrix operations, as long as there are
two concurrent matrix operations.

[0094] At 811, the matrix result stored in the designated
accumulator is loaded into an output array. Since some
embodiments store the resulting matrix using a higher
bit-depth floating-point format, such as a 21-bit or 27-bit
floating-point format, moving the result out of the matrix
processor may require multiple move instructions. In some
embodiments, the matrix result is moved into two 64-byte
registers via an output array by first converting the matrix
elements into 16-bit floating point values. In some embodi-
ments, the process at 811 is described with respect to step
713 of FIG. 7. Processing loops back to step 805 where the
matrix processor is ready to begin a matrix operation or to
make progress on an alternate matrix operation, if pending.
[0095] In some alternative embodiments (shown as a
dotted line), processing continues to 813 where a determi-
nation is made whether an alternate matrix operation is
pending and whether data for the pending alternate matrix
operation is ready to be loaded and processed by the matrix
computational unit. Under this alternative embodiment,
once the current matrix instruction is completed, the matrix
computational unit switches to an alternate matrix operation
in the event that there was an alternate matrix operation
pending completion.

[0096] At 813, a determination is made whether an alter-
nate matrix operation is pending and whether data for the
pending alternate matrix operation is ready to be loaded and
processed by the matrix computational unit. For example, in
the event a second matrix operation is received at 803 while
processing a first matrix operation, a second matrix opera-
tion pending completion will have issued reads for its
corresponding matrix arguments. A determination is made
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whether there is a second alternate matrix operation pending
and whether its data is ready to be loaded into the matrix
computational unit. In the event the operand data for an
alternate matrix operation is available, processing continues
to 815. In some embodiments, the operand data are slices of
larger operand matrices that are sized for the input arrays of
the matrix computational unit. For the weight input array, the
pending columns of elements must be ready. For the data
input array, the pending rows of elements must be ready. In
the event there is not a pending alternate matrix operation or
the pending elements for the alternate matrix operation are
not available, processing continues to 805. For example, the
pending elements may not be available due to the latency
from a memory read and/or a cache miss. Instead of stalling
while waiting for the data to become available, the avail-
ability of the data corresponding to the current matrix
operation is checked again. The first matrix operation with
available data will have its data loaded into the matrix
computational unit for processing.

[0097] At 815, the matrix processor including the matrix
computation unit is switched to perform processing on the
alternate matrix operation that is pending completion. The
alternate matrix operation is now designated as the current
matrix operation and the previously current matrix operation
is designated as the alternate matrix operation. Since a first
matrix operation may have stalled (or in some embodiments,
completed), the matrix computational unit will now work on
the second matrix operation that was pending completion. In
various embodiments, the corresponding output accumula-
tor is designated, as appropriate, as the source for previous
intermediate results and a destination for accumulating
intermediate and final results. Processing continues to 807
where computation progress is made on the newly desig-
nated current matrix operation.

[0098] Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A microprocessor system, comprising:

a matrix computational unit that includes one or more

processing elements; and

a control unit configured to provide a matrix processor

instruction to the matrix computational unit, wherein
the matrix processor instruction specifies a floating-
point operand formatted with an exponent that has been
biased with a specified bias.

2. The system of claim 1, wherein the floating-point
operand is a matrix.

3. The system of claim 2, wherein each element of the
matrix uses an 8-bit floating-point format.

4. The system of claim 3, wherein the 8-bit floating-point
format allocates 1-bit for a sign bit, 4-bits for an exponent
field, and 3-bits for a mantissa field.

5. The system of claim 3, wherein the 8-bit floating-point
format allocates 1-bit for a sign bit, 5-bits for an exponent
field, and 2-bits for a mantissa field.

6. The system of claim 2, wherein the matrix processor
instruction specifies a floating-point number format for the
floating-point operand from a group of floating-point for-
mats.
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7. The system of claim 6, wherein each floating-point
format of the group of floating-point formats utilizes a same
total number of bits for representing a floating point number
and a different number of bits for a mantissa field of the
floating point number.

8. The system of claim 1, wherein the specified bias is
configured using a register argument.

9. The system of claim 1, wherein the specified bias is
selected from a non-consecutive set of pre-determined float-
ing-point exponent biases.

10. The system of claim 1, wherein a configurable bias of
the exponent is reconfigurable via the matrix processor
instruction.

11. The system of claim 1, wherein each of the one or
more processing elements includes a floating-point multi-
plier and an accumulator.

12. The system of claim 1, wherein each processing
element of the one or more processing elements is config-
ured to perform a floating-point multiplication operation in
parallel with the other processing elements.

13. The system of claim 1, wherein the matrix processor
instruction specifies a designated accumulator for storing
intermediate results of the matrix computational unit.

14. A microprocessor system, comprising:

a matrix processor, wherein the matrix processor is con-
figured to receive a matrix processor instruction that
specifies a floating-point operand formatted with an
exponent that has been biased with a specified bias;

a post-processing unit;

a control unit configured to provide a post-processing
instruction to the post-processing unit and the matrix
processor instruction to the matrix processor; and

a post-processing register file, wherein the post-process-
ing instruction specifies an operand stored in the post-
processing register file.

15. The system of claim 14, wherein the post-processing

unit is a vector computational unit.

16. The system of claim 14, wherein the operand is a
vector operand and the post-processing instruction specifies
a data size for each vector element of the operand.

Nov. 5, 2020

17. A method comprising:
receiving a matrix processor instruction from a control
unit, wherein the matrix processor instruction specifies
a floating-point operand formatted with an exponent
that has been biased with a specified bias;
issuing one or more reads for data values of the floating-
point operand;
receiving the data values of the floating-point operand;
and
loading one or more received data values into a matrix
computational unit.
18. The method of claim 17, wherein the floating-point
operand is a matrix.
19. A method comprising:
receiving a matrix processor instruction from a control
unit, wherein the matrix processor instruction specifies
a first floating-point operand and a second floating-
point operand;
loading a first half of the first floating-point operand into
a first processing element and a second processing
element;
loading a second half of the first floating-point operand
into a third processing element and a fourth processing
element;
loading a first half of the second floating-point operand
into the first processing element and the third process-
ing element;
loading a second half of the second floating-point operand
into the second processing element and the fourth
processing element;
determining a first, second, third, and fourth floating-point
multiplication result corresponding to each of the first,
second, third, and fourth processing elements; and
storing the first, second, third, and fourth floating-point
multiplication result in an output accumulator.
20. The method of claim 19, further comprising adding
the first, second, third, and fourth floating-point multiplica-
tion result together using a vector computational unit.
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